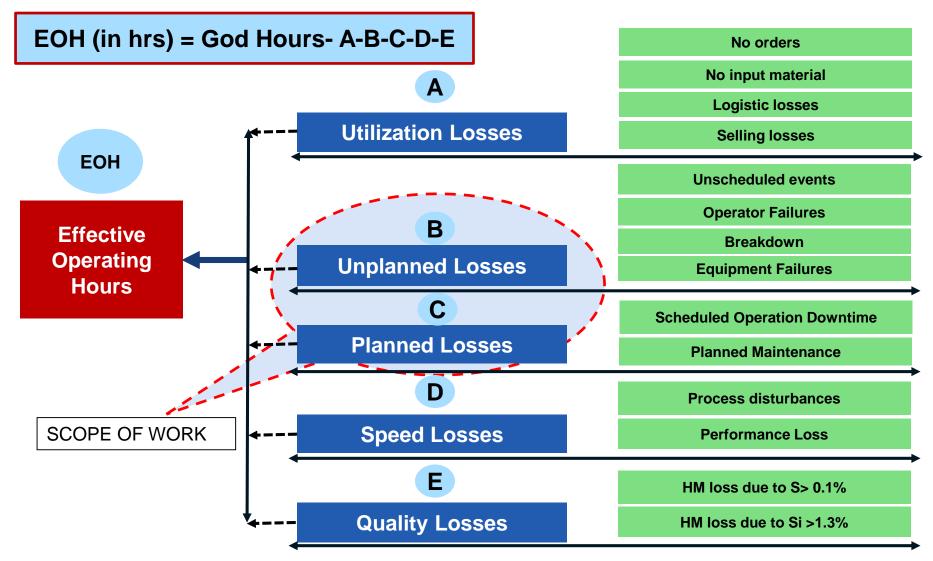
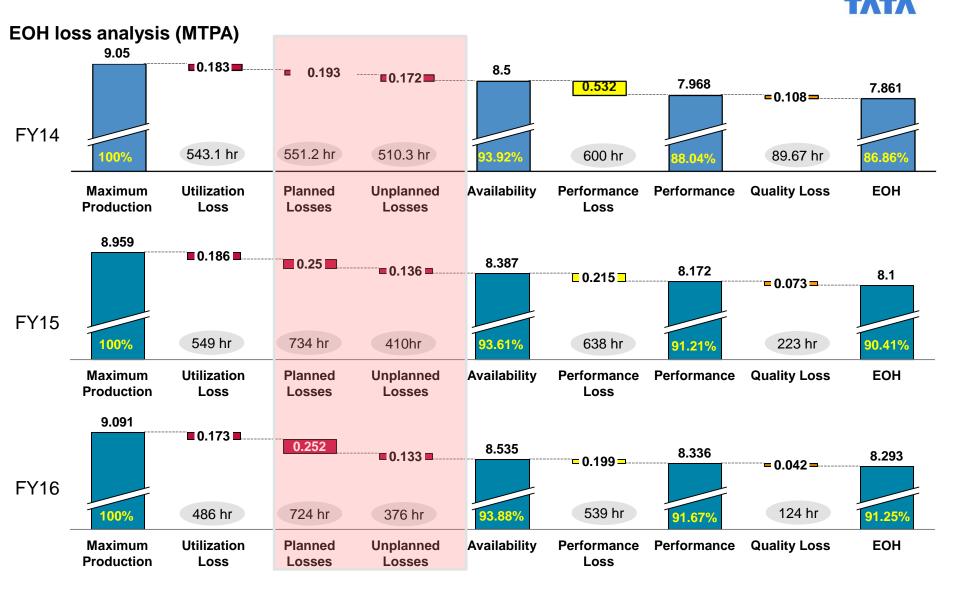

A maintenance approach towards Benchmark Effective Operating Hours at Blast Furnaces in Tata Steel, Jamshedpur

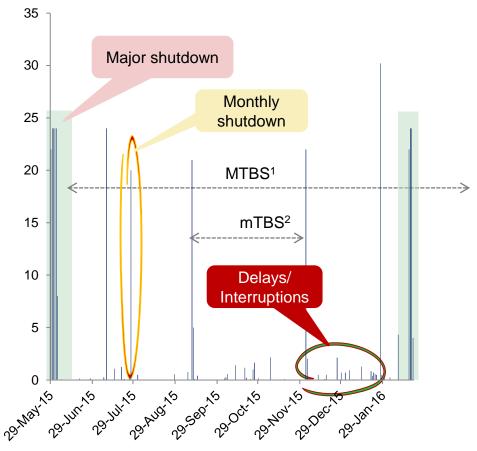
Benchmarking for Effective Operating Hours/Days

EOH – Effective Operating Hours



- Aspiration to achieve 96% EOH (350 Days) in next 2 years
- An additional 0.5 MTPA (300+ Cr to Steel Business)

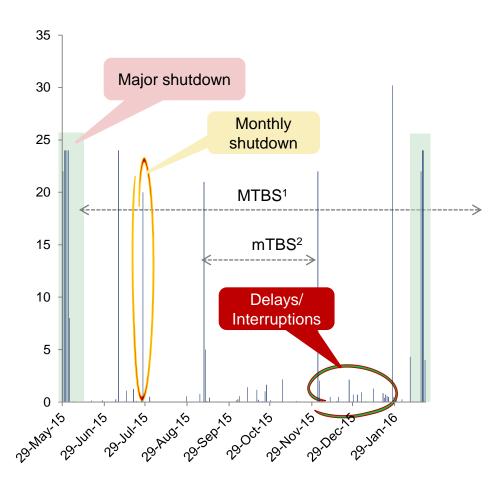

Measuring Effective Operating Hours


Blast furnace EOH basis best performance

Maintenance strategy to increase EOH

Two main value pools to target

Value pool 1: Zero delays


- Ideal maintenance planning
- Intelligent inputs, monitoring (digital)
- Smarter execution/ work processes
- 2 Value pool 2: Efficient shutdowns
 - Higher MTBS
 - Lower planned shutdown time
 - Higher execution compliance, effectiveness

MTBS – Mean Time Between Shutdowns

Maintenance strategy to increase EOH

Two main value pools to target

Value pool 1: Zero delays

- Ideal maintenance planning
- Intelligent inputs, monitoring (digital)
- Smarter execution/ work processes

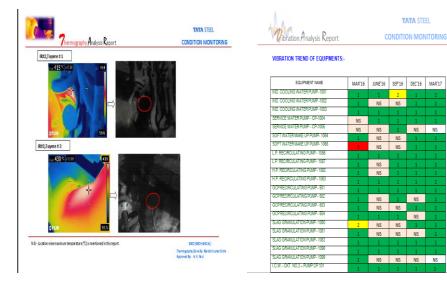
² Value pool 2: Efficient shutdowns

- Higher MTBS
- Lower planned shutdown time
- Higher execution compliance, effectiveness

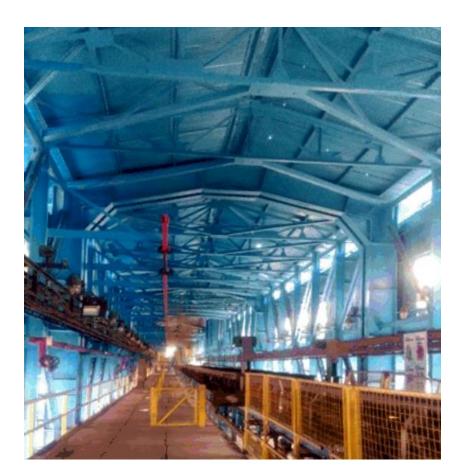
Blast furnace: Key Unplanned Losses – Chronic Soft Spots

Key breakdown Key breakdown Key breakdown issues(FY14) issues(FY15) issues(FY16) Frequency Effective Frequency Effective Frequency Effective availability loss availability loss availability loss (# of times) (# of times) (# of times) (# of hours) (# of hours) (# of hours) 19 26 Tuyere 62% 29 Tuyere 62% Tuyere 55% 15 MB 17% 10 Stoves 16% 14 Stoves 29% 18 BLT 12% BLT 13% 26 MB 9% 29 13 7% 32 MB 8% 5 GCP 6% Stoves 1 GCP 2% GCP 1% 4 BLT 1% 6

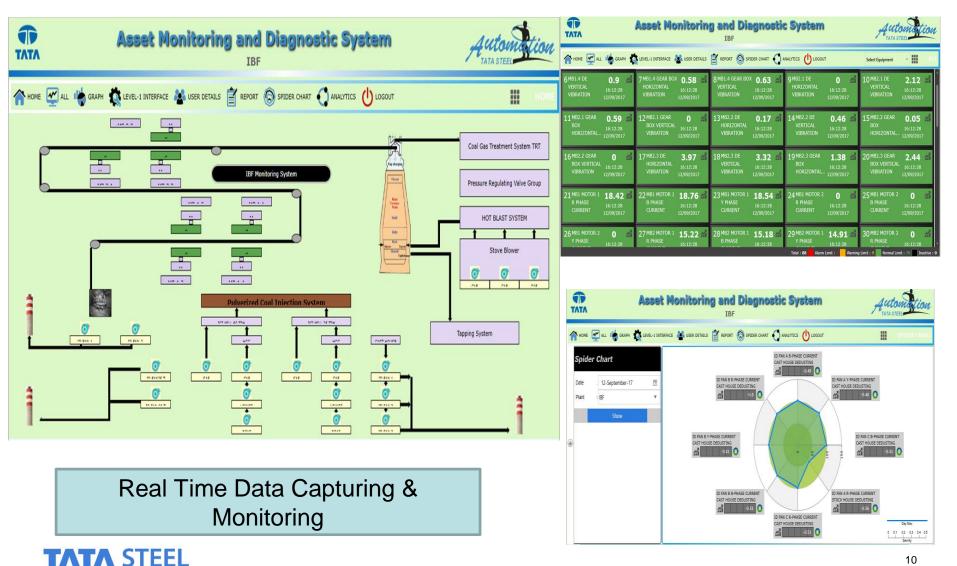
Strategy for Addressing Chronic Soft Spots



	Tuyeres	Conveyors	BLT Charging
EXTENSION OF CONDITION DIAGNOSTICS – SETTING UP OF AMDC (Asset Management & Diagnostics Centre)			
STANDARDIZATION OF INSPECTION & MAINTENANCE PROCEDURES ACROSS BFs			
RETURN TO BASIC OPERATING CONDITIONS – MODEL WORKPLACE CAMPAIGN MODEL CONVEYOR CAMPAIGN			
FORUM FOR TECHNICAL EXCHANGE WITH OEM CREATED			



Condition Diagnostics for Blast Furnaces


- Temperature Trends
- Vibration Trends
- Thickness Checks
- Weld Joint Checks
- Replacement Strategies

Model Conveyors

Data Analytics for Blast Furnaces

10

Standardization of Technical Specifications/Training

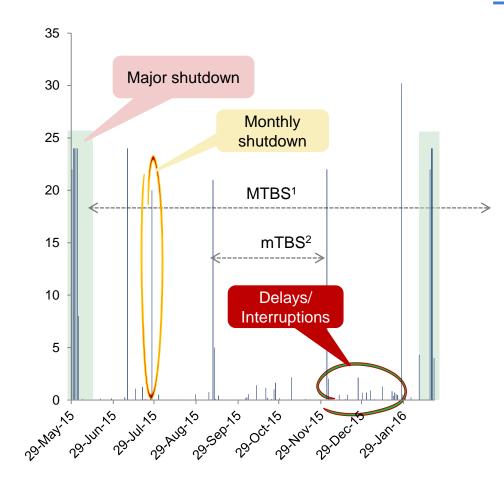
- Drawing standardization of all conveyor pulleys to ensure higher reliability.
- Development of SMPs(Standard Maintenance Practices) for all critical equipment.
- Formulation of different CCTs(Core Competency Team) for quality assurance of spares

2	Training Plan (General Mechanical and General Training)													BLAST FURNACE Norme E.No All Gostilines are commutiner, all averations carrier assuel marks. Time 3 bear	JOB FITNESS AUTHORIZATION	
	Training Plan (General)													<u>۱</u>	Dust catcher is apart of s. Cast house b. Sing granulation system c. Gas cleaning plant d. DM water plant	Mr. Md HARUN RASED ANSI
	Training Mo							Period						1	2. Dust content at Dust catcher outliet of "H" Blast furnace is a. 5-6 g /HM ³ b.50 60 g / NM ³ c. 15-20 g / NM 3 d.25-30 g / Nm 3	
Sr No.	Category	Sub-Category	Jan	Feb	Mar	Apr	May Ju	u Ju	I Aug	: Sep	Oct	Nov	Dec	1	Crapecity of each Granulated sign storage bin is A 25 m3 b 125 m3 c 125 m3 d 225 m3	Safety Pass No. : RW1210176983
		Training in hydraulic cell		-		6 Deys	6 Deys							1		Contract Employee of Mogija & Praj Co. Who
1	Hydraulics	Basic hydraulics in SNTI		-			4 Deys	4 De	<i>n</i>	-	-	-	-	+	 In Internal combustion chamber type stove. Gas is burnt in Checker chamber b. Combustion chamber C. Out side stove d. Hot blast main 	is Working at "I" Blast Furnace under work Order
		Industrial Hydraulics SNTI		+		-		-	-		-	1	-	1	Muld up of fuveres activity is done After Back draft of the lumace	No.: 4700047818/102 is
			-	-		-		-		-	-	-	-	1	b. Defore back draft of the furnace r. In Instance of back draft of addition of the furnace	
2	Centrifugal Fans	Training at SNTI		+			1 Day		-						Stowers in 10 ²⁷ Blast files. are - s) internal combustion type	Fit for : IBF BLT AREA
														1	b) external combustion type c) both internal combustion and external combustion type	Church Head (Mech. Maint.)
3	Lubrication, levelling and alignment, Gear Box	Training at SNTI	-	+				8.04	n	-			_	1	d) non of the above, F. Partices transp. of the above the - 1 transp. et physics of the above the - 1 transp. of physics of the above the -	Authorized Signatory I Blast Furnace
			-	-	-					-		-	-	1	b) temp, all the dame	
		AECT and JCC training	_	-			1 Day		\vdash						Classical and the prime difference of the adverse Dense transport wheth dense them	
		First aid and fitness		\pm			2 D	γs			-				aj 1000 dag, C b)2000deg, C c)1358 deg, C d)1250 deg, C	
4	Safety	5s, VWM and safety		-			1.00									
		Safety Awareness		\pm			2 D									
		Gas Safety		\pm			2 Di	175								
														1		
5	Pneumatics	Industrial pneumatics at SNTI		+-							-	-	-	+	Competency	Ruilding
				-										1		Dunung
6	Conveyors			-							-	-	-	1		U
			-		-						-	-		1	programmos	
.7	TPM	Basic TPM concepts (Jishu		\mp			20	ays						1	programmes	
		Hozen)	I	<u> </u>	1	I				_	-		1	-		
\mathbf{X}	Training Planned Actual															

The Bottom-Up Approach

Shop-floor driven Campaigns for Blast Furnaces

Quality circle name - A-F blast furnace hydraulics											Dep	ot A-	F BF	; Coo	ordin	Facilitator: Pawan Dubey						
Project – Reliability Improvement of Blast furnace Dustcatcher											son f				Leader Name – John Thomas Members Name – P Ram krishna; Dilip kr Jha; Mahavir Prasad; R C Patel;							
Major Project No. –97										innin npleti												
Meeting Day-Tuesday ,Time – 8:15AM										No. date	of pr	rojec	t corr	plet	Sandip Mani; K Alam;							
No.	ACTIVITY V	VEEK	1	2 3	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Target Days	Actual Days
1	Defining the proble	m			Π		Γ														7days	
2	Analyzing the prol	lem			П		Γ														7days	
3	Identifying the cau	ses			\square		Γ														7 days	
4	Finding out the roo cause	¢																			14 days	
5	Data analysis																				7 days	
6	Developing solution	'n																			28 days	
7	Foreseeing poss resistance	ble																			7 days	
8	Trail implementati and checking performance	on																			42 days	
9	Regular implementation																				14 days	
10	Follow-up/Revie	N			\square																7 days	24


- MASS
- SGA Circles

de Show **CIRCLE DETAILS** TATA NAME A-F BLAST FURNACES HYDRAULICS : CIRCLE CODE SG00006712 : DEPARTMENT : A-F BLAST FURNACES MECHANICAL AND OPERATION SECTION : CUSTOMER : LD1, LD2 & LD3 FORMATION 2009 : MEETING **EVERY TUESDAY AT 8:15 AM TO 9:00AM** : MEETING PLACE : MECHANICAL MEETING ROOM 95.32% ATTENDANCE : NO. OF KAIZEN IN FY'14 -15:14 OUR TEAM IS A CROSS FUNCTIONAL TEAM TATA STEEL

Maintenance strategy to increase EOH

Two main value pools to target

Value pool 1: Zero delays

- Ideal maintenance planning
- Intelligent inputs, monitoring (digital)
- Smarter execution/ work processes

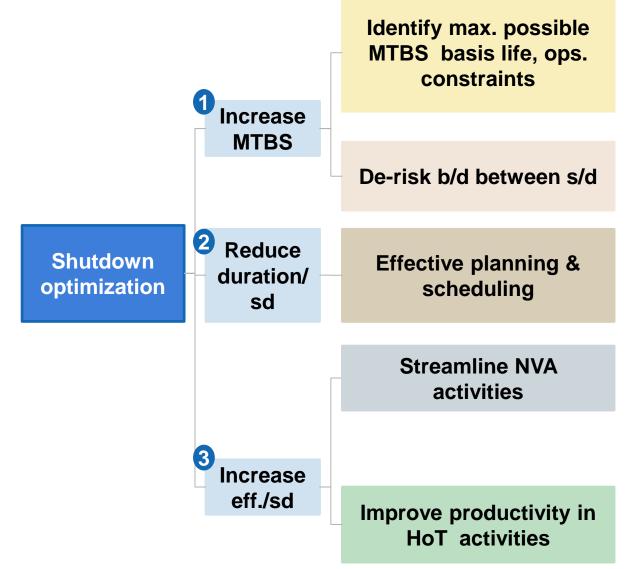
2 Value pool 2: Efficient shutdowns

- Higher MTBS
- Lower planned shutdown time
- Higher execution compliance, effectiveness

Shutdown Optimization: Analysis of Planned Losses

A Planned Outage i.e. Furnace Shutdown affects production under following buckets

- 1. Ramp-Up & Ramp-Down Time
- 2. Isolation Time
- 4. Isolation Removal & Trials
- Fixed in nature
 - Fixed in nature
- 3. Net Maintenance Time Varies according to the Shutdown Plan
 - Fixed in Nature


Shutdown Optimization: Reduction in Number of Planned Outages will result in :

- Net Gain in total Maintenance time keeping Planned Outage hour ٠ as constant in a year
- Net Gain in EOH •
- An advantage in the planning of resources & subsequently, cost •

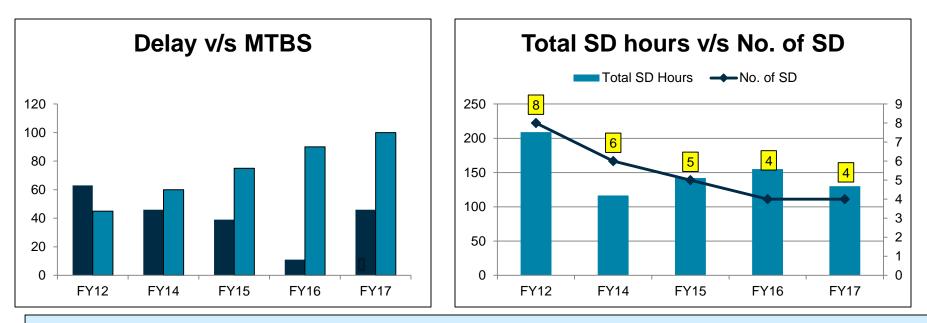
TA STEEL

Following levers identified for optimizing shutdown planning & execution process

Increase in MTBS - Risks & Challenges

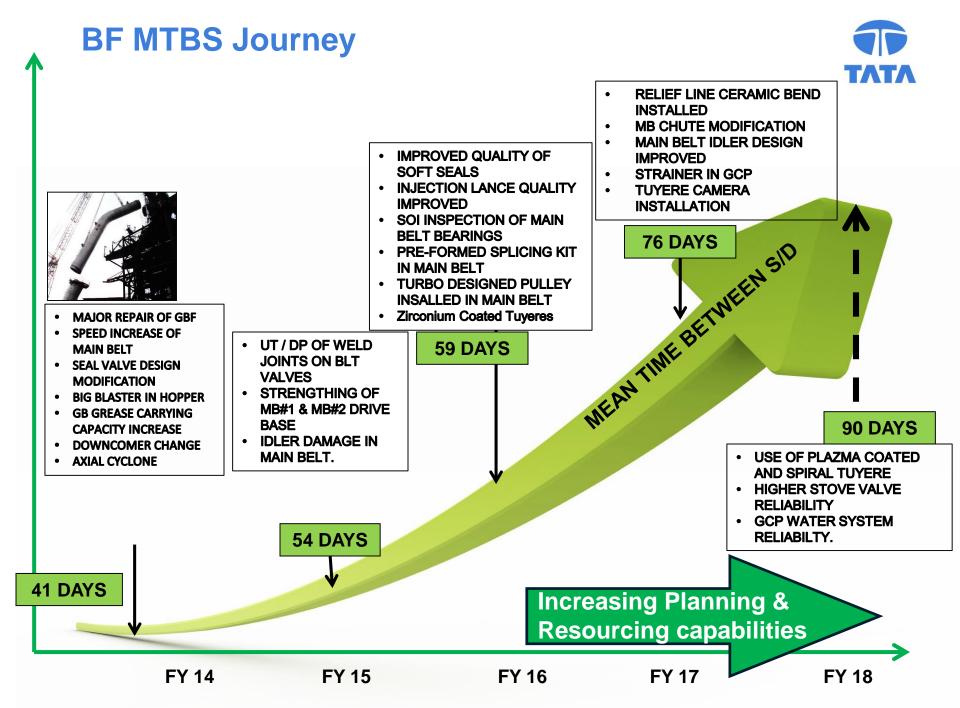
TATA

.If strategies are not implemented rigorously,


- Chances of an increase in Unplanned Outages
- De-Bottlenecking of one equipment shifts the constraint to another equipment
- Chances of bigger failures

Approach for Deployment - The increase in MTBS was first implemented in a smaller furnace

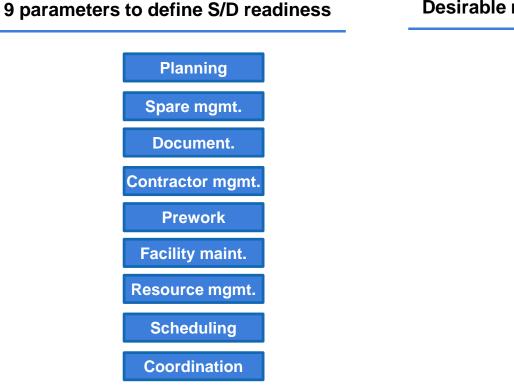
An Experiment in a Small Furnace

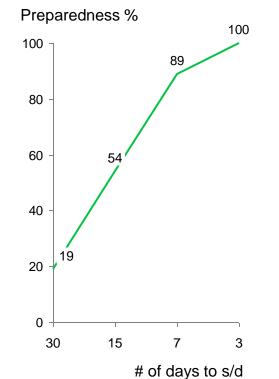


Trend1: MTBS has steadily increased from 45 days to 75 days while delay is also in decreasing trend.

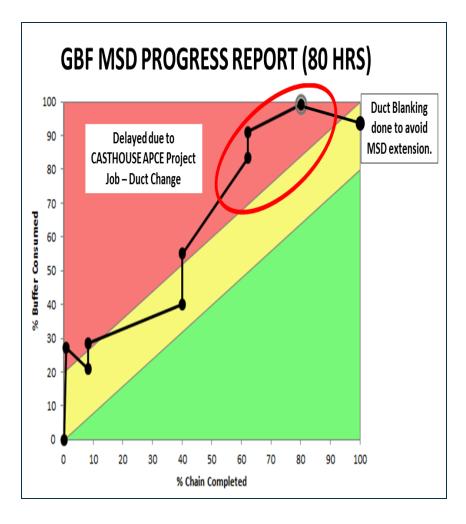
Trend2: Total shutdown hours has decreased from 200 hours to 150 hours range & in last 3 years shutdown hours more or less are same. While no. of Shutdowns goes down from 8 to 4.

Deployment of Learning in the Larger Furnaces

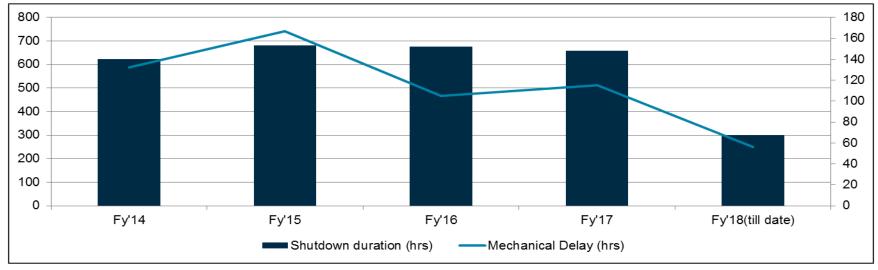

Entire value chain of shutdown management being optimized & digitized



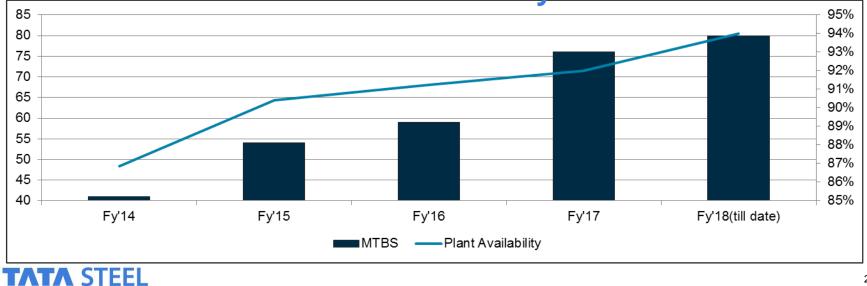
Shutdown preparedness index being developed as a lead indicator for checking readiness


Desirable readiness at each point of time

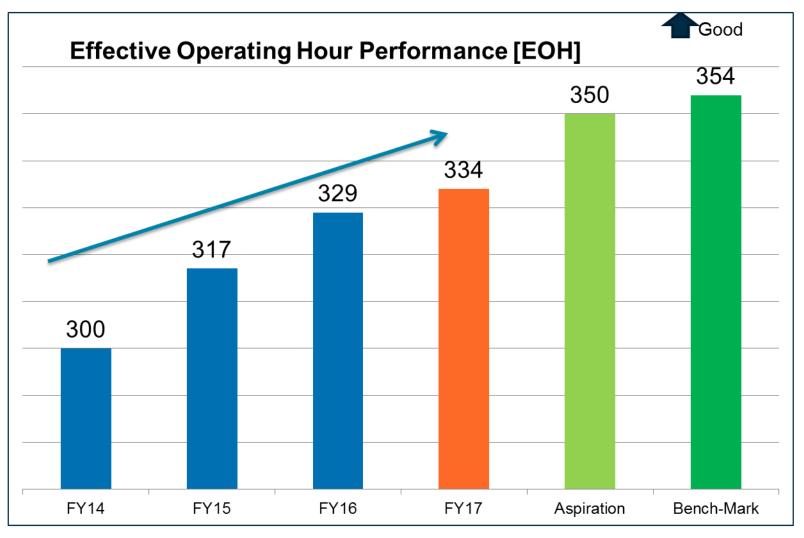
Shutdown Execution Control & Measurement of Shutdown Performance


Improvement in Shutdown Effectiveness

- Zero Rework
- No breakdowns after SD
- Time Compliance to Plan
- Job Compliance to Plan
- Unanticipated Jobs
- Jobs that took longer than plan



Shutdown Duration Vs Delay



MTBS Vs Blast Furnace Availability

22

Questions

