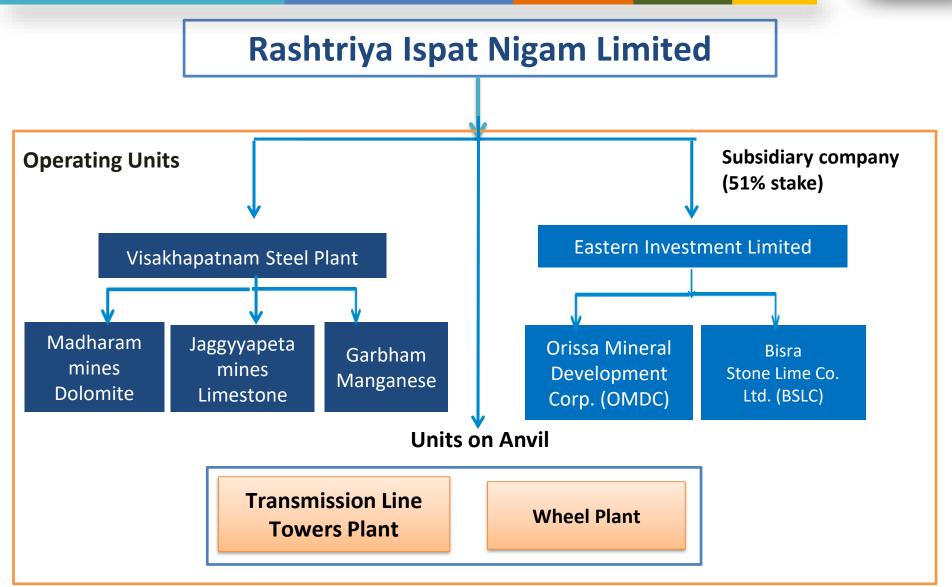


on

ROAD MAP TO ACHIEVE BENCHMARKING IN SPECIFIC ENERGY CONSUMPTION AT RINL

By Shri K Sudhakar,DGM(O)-EMD &T K Dey,DGM(EMD)i/c

Rashtriya Ispat Nigam Limited VISAKHAPATNAM STEEL PLANT


CONTENTS

COMPANY PROFILE
 PROCESS FLOW
 REDUCTION OF SPECIFIC ENERGY CONSUMPTION
 BENCH MARKING(GLOBAL)
 ENCON PROJECTS TO REDUCE GAP
 ENERGY MANAGEMENT SYSTEM
 INTERNATIONAL COOPERATION
 CDM PROJECTS
 RENEWABLE ENERGY
 CONCLUSION

RINL Corporate Structure

Rashtriya Ispat Nigam Limited

 Unit: Rs. Crs

 Turnover (2016-17)
 12,707

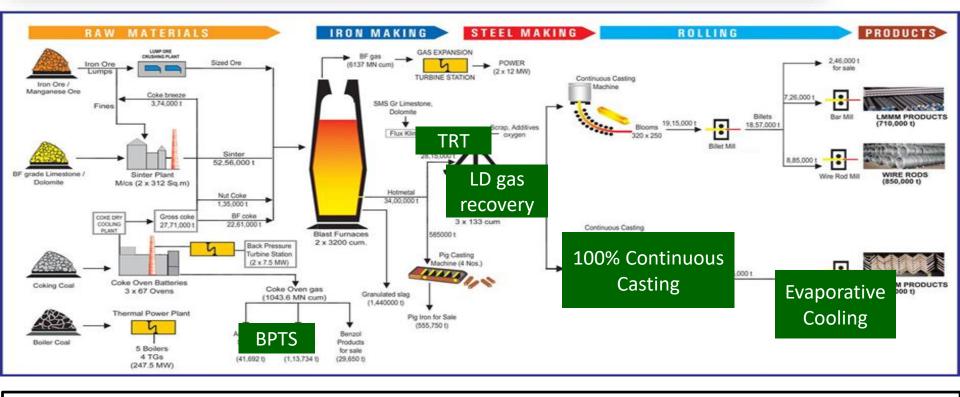
 Net worth as on 31/03/16
 9873

* 100% owned by Govt. of India

Rashtriya Ispat Nigam Limited

RINL - Snapshot

The 1st ISP to be certified for Quality, Health & Safety and Environment


1st steel Plant to get ISO 50001 certification for Energy Management

CMMI Level 3 certification for IT Systems

1st ISP to be 5S Certified for the whole plant

CO Battery with Coke Dry Quenching and Back Pressure Turbine Station 3200 cum BF with Top Recovery Turbine and BF gas recovery Rolling Mills with Stelmor & Tempcore (TMT) processes equipped with evaporative cooling for waste heat utilization

RINL's growth strategy for enhancement of capacity through a combination of brown field expansion and modernization in phases:

- 6.3 Mtpa expansion
 - Completed in 2015 and under stabilization
 - Invested Rs. 12,291 Cr (80% met through internal accruals)
- Upgradation & Modernization
 - **Underway to enhance capacity to 7.3 Mt by 17-18**
 - With an investment of Rs. 4,000 Crs.
- Vision envisages growth to 20 Mtpa by 2032-33 in phases

Energy Consumption Variables

- Process route (BF-BOF Vs EAF),
- State of Technology

Quality of Raw materials (Ash content of Coal and Coke, Coke Strength after Reaction (CSR), Alumina in Iron ore and Sinter, Silicon in Hot Metal

>Level of Energy conservation Technology(Waste heat recovery(Coke Dry Quenching, Sinter Heat recovery,BF Stoves WHR, Reheating Furnaces Heat recovery)

Process management(Coke rate at BF, Coke Breeze at SP, Hot Metal Rate at SMS)

>Energy mix(Less power import)

➤Scale of operation

Energy Efficiency in the generation of utilities (Power Generation efficiency)

Specific Energy Consumption of Indian Steel Industry

Parameter	Unit(GCal/tCS)
Indian Steel Industry	5.70-7.0
Japanese/Korean Steel Industry	4.5-5.5
IISI Reference Plant	4.5

Normalization of Specific Energy Consumption

Hot Metal Usage in Steel Making.

Parameter	Unit	Indian steel industry	IISI reference plant	POSCO
SEC	Gcal/tcs	6.80	4.5	5.4
Hot Metal Rate	Kg/tcs	1060	880	883
Difference in Hot Metal Rate	Kg/tcs		180	177
Impact on energy Consumption	Mcal/tcs		810	796.5
Normalized Specific Energy Consumption	Gcal/tcs	5.99		

Generation Efficiency of Utilities

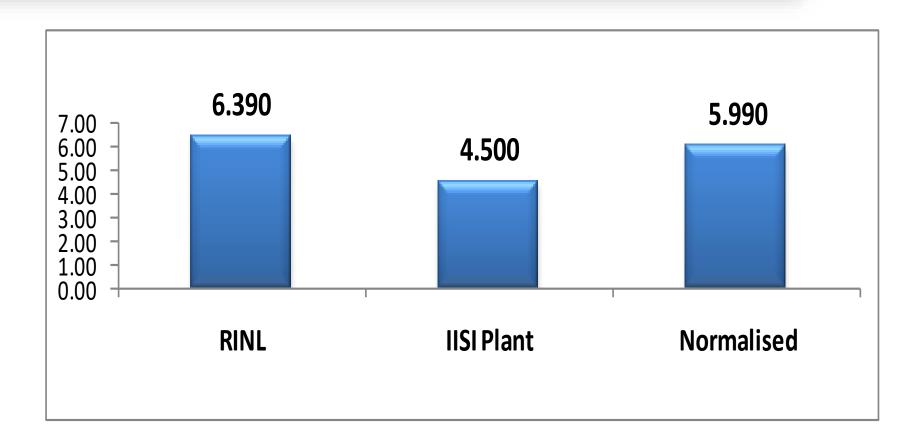
Low capacity Power Plants(30 MW units, 60 MW units Usage of By product gases-High flue gas generation, High flue gas temperature

Parameter	Unit	Indian Steel Industry	International
Power Generation efficiency	%	<30	38-40%
Power Consumption in Oxygen Plants	Kwh/thcum	800	600

Integrated Steel Plants are tested and comprehensive, energy intensive as they process virigin raw material

Electric Arc Furnace/Induction furnace route process steel scrap. No up stream energy.

Energy requirements are only for melting and casting and rolling. Energy Consumption are low in EAF route

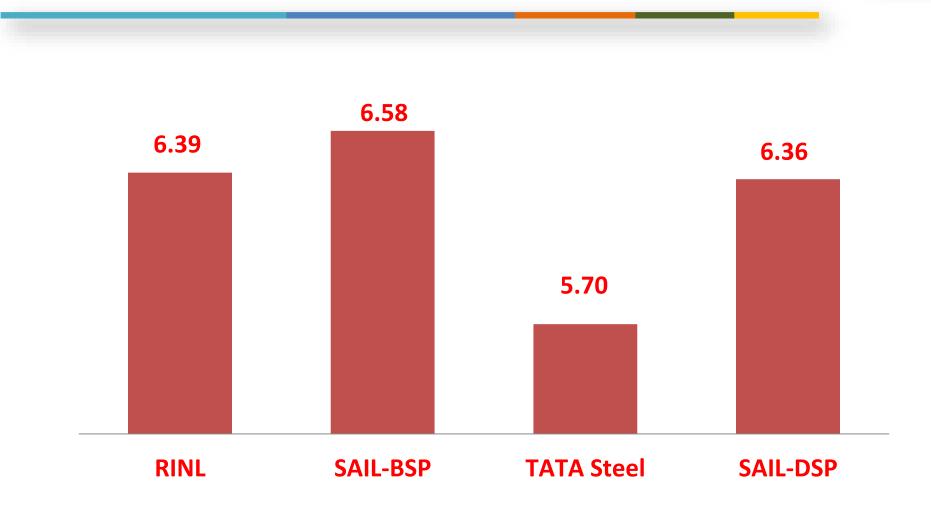

Parameter	Unit	BF-BOF Route	EAF Route
SEC	Gcal/tCS	6.8	4

Energy Consumption by Alternative Iron Making Routes

•Producing Iron other than BF route(Coke Ovens, Sinter and BF)

- •FINEX Route, COREX Process, Midrex Process
- •Avoid Coke Ovens, Sintering
- •Using fines

Parameter	Unit	BF-BOF Route	Altrenative Iron Making Route(Corex)
Coke Making	Gcal/tCS	0.802	
Sinter Making	Gcal/tCS	0.660	5.194
Iron Making	Gcal/tCS	3.200	
Total	Gcal/tCS	4.662	5.194



International Bench Marking of SEC(Gcal/tCS)

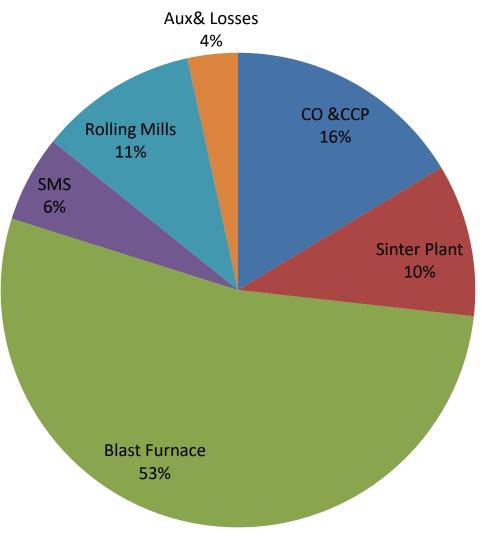
Benchmarking of Energy Consumption-Gcal/tCS

Energy	(2009-10)	GHG H	Emission	Gap :0.661 Gcal/tCS
RINL	NSC	RINL	NSC	1) Scrap usage : 200 kg/thm(As per Japanese
6.06	5.439	2.615	1.943	Industry)-RINL:80 kg/tcS
				2) All Energy Conservation technologies
				Coke Dry Quenching,
				Top Pressure Recovery Turbine,
				BOF Gas Recovery,
				Sinter Cooler waste heat recovery
				Pulverized Coal Injection,
				BF stoves Heat Recovery,
				Billet Caster,
				Hot Charging,
				Regenerative Burners ,
				Coal Moisture Control
				Sensible Heat recovery from BOF gas
				3) Waste Plastics Injection and tires(0.2 million tons-
				6 kg/tCS)
				4) Petro fuel 16 lts/Tcs

Process Bench Marking-Energy Consumption Shop Wise

	11	RINL	IISI	Demessie
SL No	Unit	2016-17	reference Plant	Remarks
				Coal Moisture Control System, High
со	Mcal/tc	1607	1233	Efficiency
		1007	1255	Coke Dry Quenching, Computerized
				Combustion Control System
				Sinter Heat Recovery System
SP	Mcal/tGs	563	407.6	Energy Efficient Burners
				Exhauster Heat Recovery System
				Stoves Waste Heat Recovery
				High Top Pressure
BF	Mcal/tHM	3491	2978	Pulverized Coal Injection
				Top Gas Recovery
				High performance Blast Furnace
				LD Gas Recovery
SMS	Mcal/tCS	241	86	Recuperative Burners
				Concast
				High performance reheating furnaces.
Rolling	Maal/+CS	757	767	Regernerative Burners,
Mills	Mcal/tCS	/ / / /	/0/	Direct/Hot charging
Others	Mcal/tCS	327	126	

Technology Deployment


			Bride of
Dept	Energy Conservation Options	Identified	Remarks
СО	Coke Dry Quenching	Yes	
	Coal Moisture Control	Νο	Non feasible due to High capital cost,high moisture for short duration
	Computerised Combustion Control System	No	High capital cost
SP	Sinter Heat Recovery	Yes	
	Energy Efficient Burners	Yes	
	Exhaust Heat recovery	No	High capital cost
BF	Stoves WHR	Yes (one BF)	Layout constraints for other BFs
	PCI	Yes	
	TRT	Yes	
SMS	LD Gas Recovery	Yes	
	LD Gas Sensible Heat recovery	No	High capital cost
	Recuperative Burner	Yes (installed in SMS-2)	
	Continuous caste	Yes	Bloomed casting installed in SMS-1 and Billet casting installed in SMS-2.

Technology Deployment

Energy Conservation Options	Identified	Remarks
High Performance Furnace	No	
Regenerative Burner	Νο	Long shutdown required High capital cost
Waste heat recovery	Yes	Vertical shaft kilns
Direct/Hot Charging Combined cycle gas turbine (CCGT)	Yes (partially) No	High capital cost. However RINL installed 120MW BF gas based power plant to utilize surplus BF gas.
	Options High Performance Furnace Regenerative Burner Waste heat recovery Direct/Hot Charging Combined cycle gas	OptionsIdentifiedHigh Performance FurnaceNoRegenerative BurnerNoWaste heat recoveryYesDirect/Hot ChargingYes (partially)Combined cycle gasNo

Specific Energy Consumption-

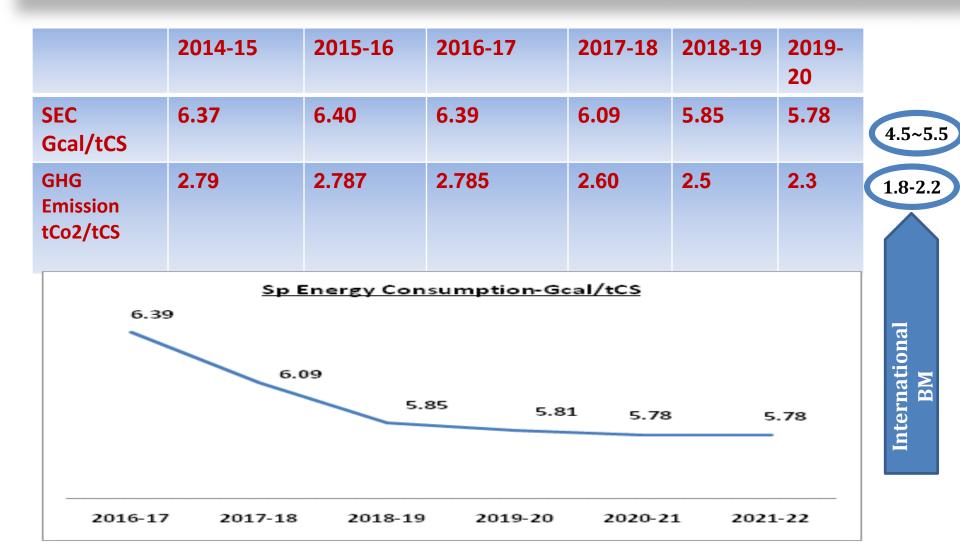
Bench Marking of BF Energy Consumption

Comparison of BF Energy			
Consumption			
Parameters	Unit	RINL (BF-3)	POSCO
Specific Energy			
Consumption	Gcal/t	3396	2978
BF Productivity	T/D/CUM	2.05	2.75
Fuel Rate	KG/THM	535	489
Coke Rate	Kg/tHM	493	321
PCI Rate	Kg/tHM	42	168
Coke -Ash Content	%	13.97	11.72
Carbon Rate	Kg/tHM	456	414
Hot Blast Temp	DegC	992	1159
Top pressure	Kg/cm2	2.0	2.61
Si in HM	%	0.50	0.25
CSR-Coke	%	65.3	69.8
Al2o3 in Sinter	%	2.06	1.52
BF Slag Rate	Kg/tHM	324	277
Oxygen enrichment	%	1.98	4.02

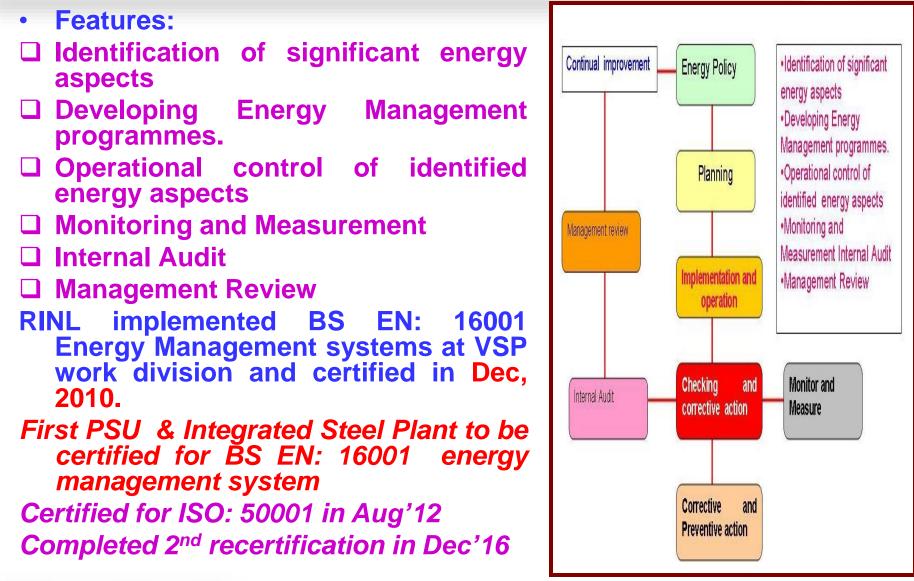
Adoption of Green Technologies

Name of Technology	Features	Energy Savings(TOE)	GHG redn(tCo2)
Coke Dry Quenching Plant	Power gen: 2X7.5MW	115285	689586
Top Pressure Recovery Turbine	Power gen; 2x12 MW	21257	127152
LD Gas Recovery System	80000 Cum	58022	347060
Evaporative Cooling System	13 ata steam: 19 t/hr	12173	72814
Preheating of combustion air at CRMP	Air preheating: 250degc	3469	21062
Gas and air recuperators in ROLLING MILLS	Air : 450 degC Gas:250 degC	16105	57088
Reducing GHG emission by about 13 lakh tons annually			

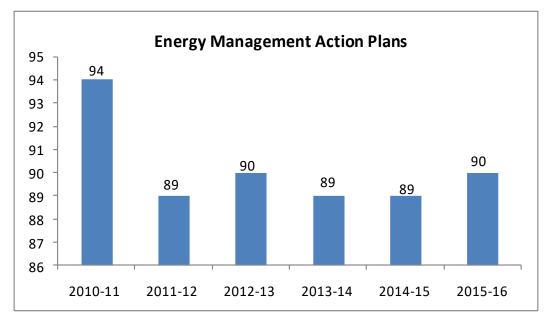
Rashtriya Ispat Nigam Limited

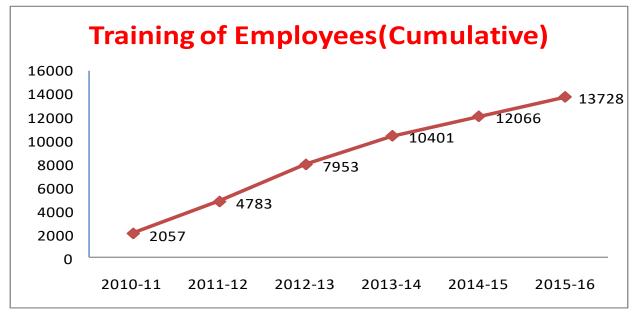

Energy Conservation Technologies in Expansion and Modernization

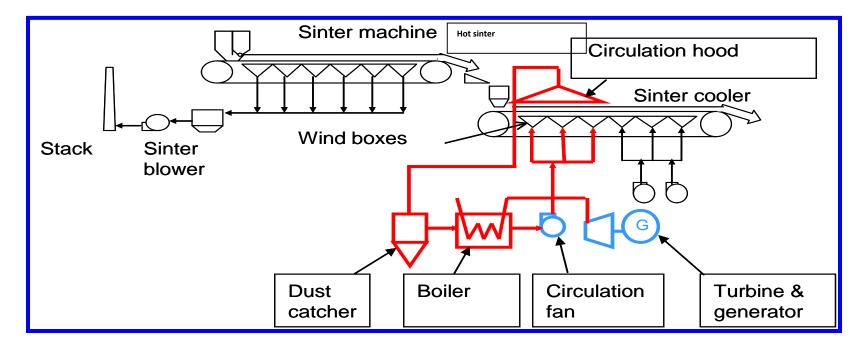
NAME OF THE PROJECT	ENERGY SAVINGS (GCALS)	GHG EMISSION REDUCTION (tCo2)
PCI IN BLAST FURNACES	1518750	910164
POWER GEN FROM COOLING OF COKE in Batt-4	207384	124282
ENERGY EFFICIENT BURNERS AND WHR IN SP-2.	73349	89294
20.6 MW WHR ON SINTER STRAIGHT-LINE COOLER	368130	220612
BF-3 STOVES WASTE HEAT RECOVERY.	149008	43958
BILLET CASTER IN SMS-2	1807185	1083030
ENERGY EFFICIENT VERTICAL SHAFT KILN	141000	51912
ENERGY EFFICIENT AIR SEPARATION UNIT	61939	23227
SINTER PLANT 1&2 CAPACITY ENHANCEMENT	279125	167475
BF-1 &2 MODERNISATION & UPGRADATION	652800	391200
	5196731	3081927


Rashtriya Ispat Nigam Limited

Roadmap for Sp. Energy Consumption (Gcals/tCS) & CO2 emissions(tCo2/tCS)




Energy Management System ISO:50001


Energy Management System

Installation of 20.6MW waste heat recovery power plant at straight line cooler of Sinter plant-1 under green aid plan by NEDO, Japan

No of Projects Registered(BF3 TRT,COB4 , BF3 WHR, BF gas based CPP-2)	4
Verification completed (COB4)*	1

* UNFCCC issued 70,516 CER to RINL

Renewable Energy Utilization

RINL commissioned 5 MW Solar Power Plant Investment: Rs 36 cr

Installing 1MW Roof Top Solar Power Plant at various Building

Thank you

राष्ट्रीय इस्पात निगम लिमिटेड RASHTRIYA ISPAT NIGAM LIMITED