Benchmarking for Enhancing Competitiveness of Indian Steel Plants

The IIM Delhi Chapter, 15th September'2017

Prabhat Kumar Ghorui Sr. Vice President JSW Steel Ltd., Bellary, Karnataka

Introduction – Need for benchmarking

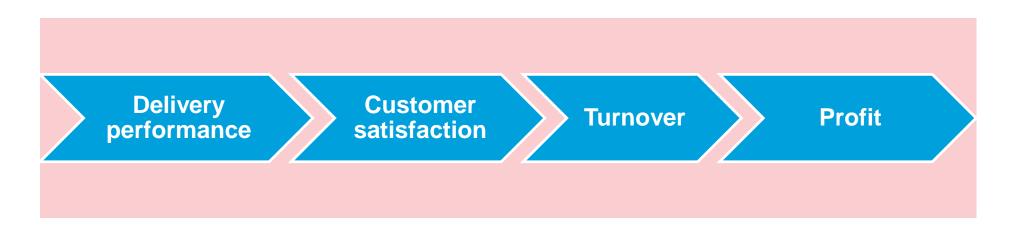
Global Benchmark for Iron & Steel Industry

Benchmarking – JSW Steel vs Indian Steel Plants

JŚW

JSW Initiatives

Why Benchmarking?


"What you don't measure, you can't manage."

- \succ Helps in establishing a standard for comparison.
- Helps enterprises to identify inefficiencies and search for more efficient technology / opportunities.
- > Improve the understanding of a process and help identify best practices.
- > It improves the skill, knowledge and efficiency of the people
- > Increased attention for energy-efficiency and performance.
- Benchmarking essentially is a measuring Tool and helps in continual improvements.

What Benchmarking influence?

Introduction - Need for benchmarking

Global Benchmark for Iron & Steel Industry

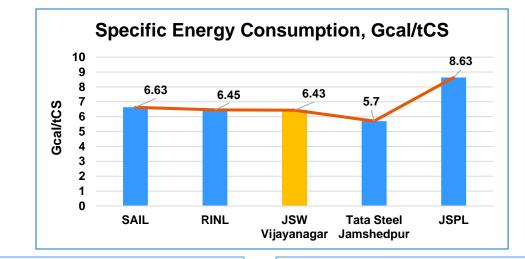
Benchmarking – JSW Steel vs Indian Steel Plants

JSW Initiatives

Global Benchmark for Iron & Steel Industry

#	Parameters	Units	Global Average	India Average
1	Greenhouse gas (CO ₂) emissions	Tons CO ₂ / TCS	1.90	2.60
2	Specific Energy Consumption	GCal / TCS	4.85	6.25
3	Water pollutant discharge	Kg / TCS	Zero	0.10
4	Blast furnace productivity	T / m³/ day	3.0	2.3
5	Blast Furnace campaign life	Years	20	< 15
6	BOF lining life	No. of Heats	12500	6000
7	BOF/EAF slag utilisation	%	75	30-50
8	R&D Expenditure/Turnover	%	1.50	0.20

Introduction - Need for benchmarking


Global Benchmark for Iron & Steel Industry

Benchmarking – JSW Steel vs Indian Steel Plants

JSW Initiatives

JSW Steel vs Indian Steel Makers

4.44

Bhusan

4.4

Comparison of Indian Blast Furnace Performance

Indian BFs		Productivity	Slag Rate	PCI Rate	Coke Rate	Fuel Rate	
		t/m3/day	kg/thm	kg/thm	kg/thm	kg/thm	
Tata Steel	BF- H	2.78	295	212	325	537	
	BF#1	3.30	412	119	426	556	
JSPL	BF#2	2.58	396	145	390	555	
RINL BF#3 1.5		1.55	321	2	532	553	
Bhusan Steel	Bhusan Steel BF#1 1.33		402	113	353	535	
JSW Vjnr	BF#4	2.88	400	150	395	545	

Benchmarking – JSW Steel vs Indian Steel Plants

JSW Initiatives

Bench Marking Parameters at JSW Steel

- Specific energy consumption
- CO2 emission
- Waste Utilization
- Value added grades of steel

Counter measures taken at JSW Steel

Indicators	Measures
Reduction in Specific energy consumption and CO ₂ emission	 > Use of Corex export gas in DRI making and Reheating furnaces > Increased PCI injection in BF (130 to 160 kg/thm) at higher slag rate > Waste heat recovery at sinter plant through steam generation > Upgradation of low grade iron ores through beneficiation > Upgradation of BF1 from 0.9 to 1.9 MTPA capacity HM production (reduced fuel consumption and CO₂ emission)
Waste Utilization	 > Slime recovery plant > Micro pellet plant > Wsate to wealth plant (Fe & C recovery from dust and sludge) > Mill Scale Briquetting Plant
Value Added Steel	 Development of automotive 3rd Generation Steels (Ultra high strength steels) Development of high grade electrical steels (CRNO Electrical Steel)

Ore Beneficiation Plant (OBP) -- 20 MTPA processing capacity

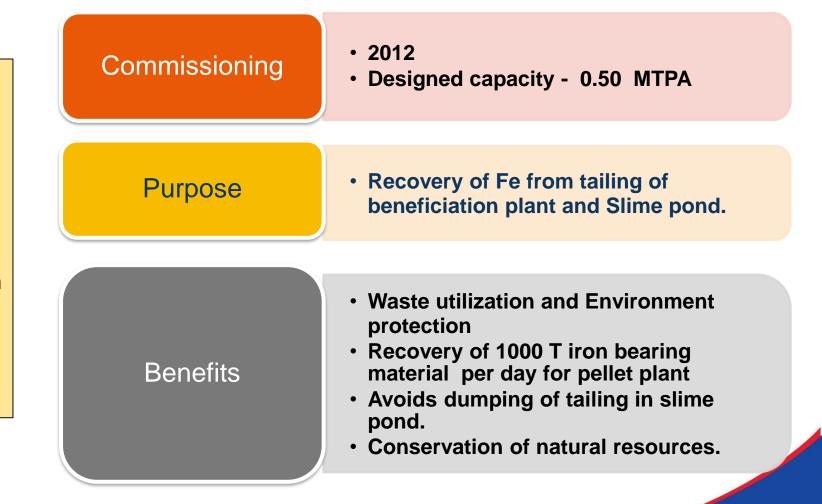
In order to maximizing the utilization of low and medium grade iron ores and to reduce the sp. energy consumption ;

Setting-up of Ore beneficiation Plant

Plan to set-up large
 (5500 m³) Blast Furnace

 Usage of 100% pellet as feed to Blast
 Furnace for better
 quality and productivity

	Commissioning	 2011 Designed capacity - 20 MTPA Largest beneficiation plant in Asia
	Purpose	 Upgradation of low and medium grade iron ore to feed agglomeration units
9	Benefits	 Reduced dependency on lump ore as the share of prepared burden is ~90% Significant cost saving Utilization of domestic low and medium grade iron ore Supply of desired feed quality to agglomeration units.


Slime Recovery Plant (waste utilization initiative)

 Feed to SRP: Beneficiation Plant tailing and Slimes from slimeponds.
 Fe upgradation from 48 to 60

% with weight

recovery of

~35%

First time

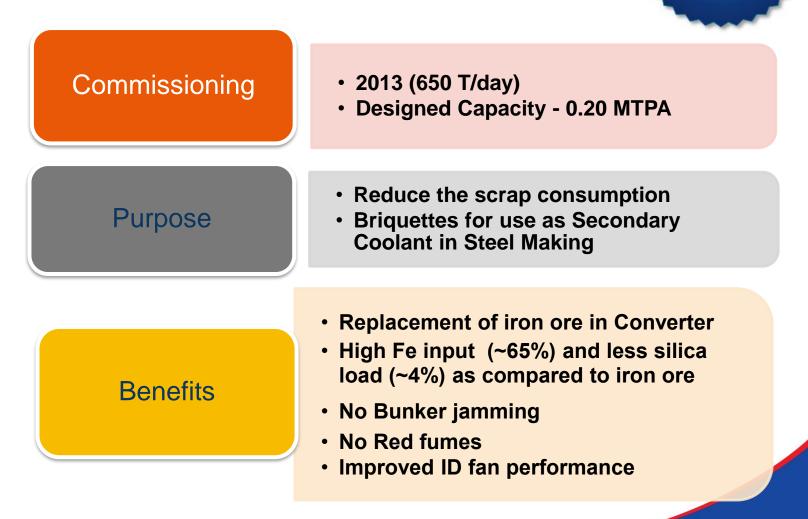
in

country

Micro pellet Plant (waste utilization initiative)

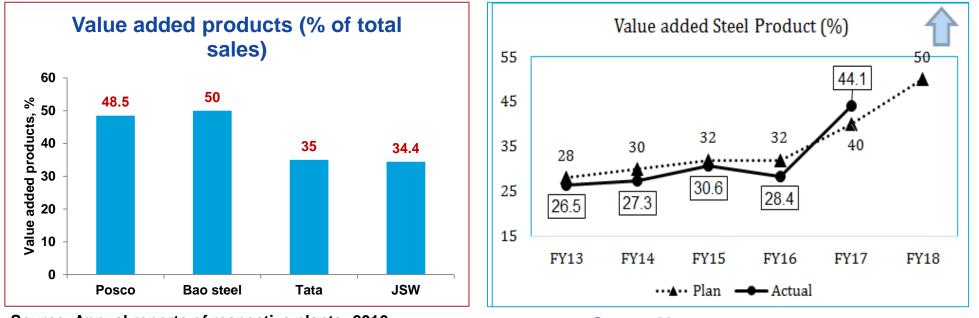
	Commissioning	 2013 Designed capacity - 0.60 MTPA Avg. production:- 1900 T/day
	Purpose	 Recycling of Dust (Bag filter dust, ESP dust, Lime & dolo fines, CDQ fines), Sludge and LD Slag fines in Sinter making through micropelletization.
 Sludge BOF Slag Bag Filter Dust CDQ Dust Lime&Dol o Fines Bentonite 	Benefits	 Helps comply with environmental regulations on airborne dust emissions Reduction of solid fuel by 2 kg/T of sinter Use of iron bearing waste (~40% Fe in micropellets) Converts heterogeneous waste fines into homogeneous granules Spherical shape gives uniform permeability

Waste to Wealth Plant (WWP) – Iron & Carbon Recovery



Commissioning	 2015 (Avg. production : 500 T/day) Designed capacity - 1000 T/day
Purpose	 Recovery and Upgradation of low-Fe sludge and dusts
Benefits	 Simple beneficiation circuit (Two stage magnetic separation). Fe upgradation from 40 to 63% with 40% yield. Concentrate (63% Fe) used in Pellet making Avoids dumping/shifting cost. Environment friendly technology

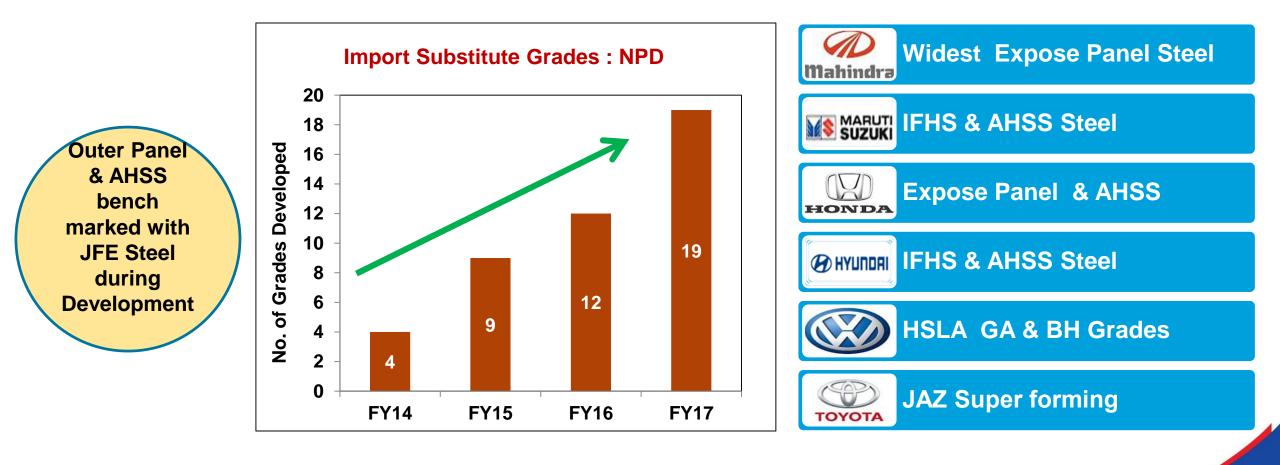
Mill Scale Briquetting Plant (waste utilization initiative)



First time

country

Value Added Products



Source: Annual reports of respective plants- 2016

JSW Vijayanagar Works

Make in India - Import Substitute in Automotive Grades

Introduction - Need for benchmarking

Global Benchmark for Iron & Steel Industry

Benchmarking – JSW Steel vs Indian Steel Plants

JSW Initiatives

JSW Roadmap

- To set-up new Blast Furnace (5500 m³) to mitigate fuel consumption and CO₂ emission.
- Usage of 100% pellet as feed to Blast Furnace for minimized environmental impact
- Plan to upgrade existing BF3 from 4019 m³ to 5339 m³ working volume
- Dry slag granulation for heat recovery and power generation

> Waste management

- 100% solid waste recycling (presently @ 88%)
- Sustaining Zero liquid discharge

Value added product

- Development of automotive 3rd Generation Steels (Ultra high strength steels)
- Development of high end electrical steels (CRNO Electrical Steel)

JSW benchmark for value added products

Salzgitter-Germany

RANKED 6th AMONGST TOP 37 "WORLD-CLASS" STEELMAKERS

SOURCE: World Steel Dynamics - Ranking as on June 2017 (based on 23 parameters)

Ranking by World Steel Dynamics (based on 23 factors) - June 2017

Factor	Weigh tage	POSCO	Severstal	Nucor	NLMK	NIPPON	JSW Steel	JFE	Arcelor Mittal	Voest Alpine	Bao- Steel
		S.Korea	Russia	USA	USA	Japan	India	Japan	Multi	Austria	China
Size	5%	9	6	7	7	9	6	8	10	5	9
Expanding capacity	5%	9	6	8	7	5	10	5	3	7	10
Value-added product mix	5%	9	6	6	6	10	7	10	8	10	9
Conversion costs : yields	5%	9	8	10	7	10	10	10	7	9	8
Energy costs	3%	7	8	8	8	6	6	6	6	5	6
Cost-cutting efforts	6%	10	8	6	8	7	9	7	9	8	8
Labour cost	2%	7	9	8	8	6	10	6	6	5	8
Environment and safety	4%	9	9	9	9	9	9	9	9	9	9
Ranking		1	2	3	4	5	6	7	8	9	10

Delivering Growth in Challenging Times

Thank You

It di te il te il te il